Universitätssiegel
logo
Secretary
Bettina Knorr
knorr@uni-heidelberg.de
Phone: +49 (0) 6221 54-5560
Fax: +49 (0) 6221 54-4529
 
People
Bernhard Höfle
Nicole Aeschbach
William Albert
Naomi Held
Sina Leser
Jannik Meyer
Moritz Müller
Jule Schrepfer
Ronald Tabernig
Hannah Weiser

 
Postal Address
Heidelberg University
Prof. Bernhard Höfle
Institute of Geography
Im Neuenheimer Feld 368
69120 Heidelberg
Germany
 

Open Source Tools and Data

This website can be accessed via a short URL: www.uni-heidelberg.de/3dgeo-opensource

Open Source Research Software
HELIOS

HELIOS++ – Heidelberg LiDAR Operations Simulator

HELIOS++ generates synthetic point clouds for customized virtual scenes and many platforms and scanning devices.

/md/chemgeo/geog/3dgeo/py4dgeo_logo_writing.png

py4dgeo

Open source Python library for geographic change analysis in 4D point cloud data

/md/chemgeo/geog/3dgeo/py4dgeo_logo_small.png

pytreedb

Open source software with an object-based library to provide a database interface and REST API of vegetation tree objects that were captured as 3D point clouds.

/md/chemgeo/geog/3dgeo/afw_icon.jpg

AFwizard - Adaptive Filtering Wizard

Python package to enhance the productivity of ground point filtering workflows in archaeology and beyond.

VOSTOK

VOSTOK – Voxel Octree Solar Toolkit

VOSTOK provides solar potential estimations in point clouds, including occlusion effects of 3D neighborhoods.

Web Services
3D-Micro-Mapping

3D-Micro-Mapping

3D-Micro-Mapping of tree stem positions from point cloud profiles.

YouTube Channel

Youtube Channel

A collection of point cloud flights, project documentations, manuals, etc.

Sketchfab Profile

Sketchfab Profile

3D models and point clouds

Potree Projects

Potree Projects

Our point clouds in the great Potree point cloud renderer (Schütz et al. 2020).

Open Source Datasets
MarkerMarker
25
7
Leaflet Map data © OpenStreetMap contributors, Imagery © Mapbox

Table of datasets

Click on the name to show details:


3D Point Cloud from Nakadake Sanroku Kiln Site Center, Japan: Sample Data for the Application of Adaptive Filtering with the AFwizard
methodULS
urlhttps://doi.org/10.11588/data/TJNQZG
projectsAdaptive Filtering Wizard

3D Micro-Mapping of Subsidence Stations [Source Code and Data]
methodOther
urlhttps://doi.org/10.11588/data/OU8YA1
projectsPermaSAR
papersAnders et al. 2020



Terrestrial, UAV-borne, and airborne laser scanning point clouds of central European forest plots, Germany, with extracted individual trees and manual forest inventory measurements
methodTerrestrial laser scanning, UAV-borne Laser Scanning, Airborne Laser Scanning
epochs2019, 2020
urlhttps://doi.org/10.1594/PANGAEA.942856
projectsSYSSIFOSS
papersWeiser et al. 2021



Terrestrial, UAV-borne, and airborne laser scanning point clouds of central European forest plots, Germany, with extracted individual trees and manual forest inventory measurements
methodTerrestrial laser scanning, UAV-borne Laser Scanning, Airborne Laser Scanning
epochs2019, 2020
urlhttps://doi.org/10.1594/PANGAEA.942856
projectsSYSSIFOSS
papersWeiser et al. 2021

Digital Elevation Model from raw CoSSC TanDEM-X data (2015) in the area of Trail Valley Creek, Northwest Territories, Canada
methodOther
epochs2019, 2020
urlhttps://doi.org/10.1594/PANGAEA.902503
projectsPermaSAR
papersAntonova et al. 2019

Airborne laser sanning point clouds of Trail Valley Creek, NWT, Canada
methodAirborne Laser Scanning
epochs2017, 2019
urlhttps://doi.org/10.1594/PANGAEA.891157, https://doi.org/10.1594/PANGAEA.934387
projectsPermaSAR
papersAntonova et al. 2019

GNSS Measurements Inuvik-Tuktoyaktuk-Highway (ITH) and Trail Valley Creek (TVC)
methodOther
epochs 2018-08-17 - 2018-08-26
urlhttps://doi.org/10.1594/PANGAEA.918649
projectsPermaSAR

Topsoil temperature data below different vegetation types at Trail Valley Creek, Canada, 2016-2018
methodOther
epochs2016-08-28 - 2018-08-22
urlhttps://doi.org/10.1594/PANGAEA.918615
projectsPermaSAR
papersGrünberg et al. 2020

M3C2-EP: Pushing the limits of 3D topographic point cloud change detection by error propagation [Data and Source Code]
methodTerrestrial laser scanning
epochs2017-07-19 - 2018-07-30
urlhttps://doi.org/10.11588/data/XHYB10
projectsM3C2-EP: Error propagation for topographic 3D change detection
AHK-4D
papersWiniwarter et al. 2021

Correspondence-driven plane-based M3C2 for quantification of 3D topographic change with lower uncertainty [Data and Source Code]
methodTerrestrial laser scanning
epochs2019-06-24 - 2019-08-30
urlhttps://doi.org/10.11588/data/TGSVUI
projectsMulti-Directional 3D topographic change
AHK-4D
papersZahs et al. 2022

Terrestrial laser scanning point clouds and DEM at Samoylov in 2017
methodTerrestrial Laser Scanning
epochs2017
urlhttps://doi.org/10.1594/PANGAEA.891157
projectsPermaSAR
papersBoike et al. 2019

Multisensor ground-based measurements of the permafrost thaw subsidence in the Trail Valley Creek, NWT, Canada
methodTerrestrial Laser Scanning
epochs2015-06, 2015-08, 2016-07, 2017-06
urlhttps://doi.org/10.1594/PANGAEA.888566
projectsPermaSAR
papersAnders et al. 2020, Marx et al. 2017

Fully Automatic Spatiotemporal Segmentation of 3D LiDAR Time Series for the Extraction of Natural Surface Changes [Source Code, Validation Material and Validation Results]
methodTerrestrial laser scanning
epochs2016-11-11 - 2017-05-26
urlhttps://doi.org/10.11588/data/4HJHAA
projects4D Objects-By-Change
papersAnders et al. 2021

Improving change analysis from near-continuous 3D time series by considering full temporal information [Data and Source Code]
methodTerrestrial laser scanning
epochs2016-11-11 - 2017-05-26
urlhttps://doi.org/10.11588/data/1L11SQ>
projects4D Objects-By-Change
papersAnders et al. 2021

Terrestrial laser scanning data of the Nesslrinna landslide close to Obergurgl, Austria acquired during the Innsbruck Summer School of Alpine Research
methodTerrestrial laser scanning
epochs2015, 2017
urlhttps://doi.org/10.1594/PANGAEA.901293
projectsInnsbruck Summer School of Alpine Research
papersRutzinger et al. 2016, Rutzinger et al. 2018

Terrestrial laser scanning data of the Äußeres Hochebenkar rock glacier close to Obergurgl, Austria acquired during the Innsbruck Summer School of Alpine Research
methodTerrestrial laser scanning
epochs2015, 2016, 2017
urlhttps://doi.org/10.1594/PANGAEA.902042
projectsAHK-4D
Innsbruck Summer School of Alpine Research
papersZahs et al. 2019, Rutzinger et al. 2018, Rutzinger et al. 2016

Terrestrial and unmanned aerial vehicle images and point clouds of the Rotmoos valley near Obergurgl, Austria with coordinates of corresponding ground control points acquired during the Innsbruck Summer School of Alpine Research
methodPhotogrammetry
epochs2015, 2017
urlhttps://doi.org/10.1594/PANGAEA.898939
projectsInnsbruck Summer School of Alpine Research
papersRutzinger et al. 2016, Rutzinger et al. 2018

Capturing complex star dune dynamics - Repeated highly accurate surveys combining multitemporal 3D topographic measurements and local wind data
methodTerrestrial laser scanning
epochs2018-10, 2020-02
urlhttps://doi.org/10.11588/data/ZAMGCL
papersHerzog et al. 2022



UAV-Photogrammetry, UAV laser scanning and terrestrial laser scanning point clouds of the inland dune in Sandhausen, Baden-Württemberg, Germany
methodTerrestrial laser scanning, UAV-borne Laser Scanning, Photogrammetry
epochs2021-02, 2021-08, 2021-09, 2021-10, 2022-05
urlhttps://doi.org/10.1594/PANGAEA.949228

Airborne Laser Scanning (ALS) Point Clouds of the Inuvik-Tuktuyaktuk-Highway, NWT, Canada (2018)
methodAirborne Laser Scanning
epochs2018
urlhttps://doi.org/10.1594/PANGAEA.939655

Airborne laser scanning (ALS) point clouds with full-waveform (FWF) data of central European forest plots, Germany
methodAirborne Laser Scanning
epochs2019-07-05
urlhttps://doi.org/10.1594/PANGAEA.947038

A six month high resolution 4D geospatial stationiary laser scan dataset of the Kijkduin beach dune system, The Netherlands
methodTerrestrial laser scanning
epochs2016-11-11 - 2017-05-26
urlhttps://doi.pangaea.de/10.1594/PANGAEA.934058
projectsCoastScan
papersVos et al. 2022, Anders et al. 2021, Anders et al. 2020, Anders et al. 2019


UAV laser scanning and terrestrial laser scanning point clouds of snow-on and snow-off conditions of a forest plot in the black forest at Hundseck, Baden-Württemberg, Germany [data].
methodUAV-borne Laser Scanning, Terrestrial Laser Scanning
epochs2021-01, 2021-02
url https://doi.org/10.11588/data/UCPTP1
papersScharffenberger 2022

Hourly Terrestrial Laser Scanning Point Clouds of Snow Cover in the Area of the Schneeferner, Zugspitze, Germany.
methodTerrestrial Laser Scanning
epochs2018-04-17 - 2018-04-23
url https://doi.pangaea.de/10.1594/PANGAEA.941550
projectsAuto3Dscapes - Autonomous 3D Earth Observation of Dynamic Landscapes

Manually labeled terrestrial laser scanning point clouds of individual trees for leaf-wood separation
methodTerrestrial Laser Scanning
epochs2019-06, 2019-07, 2019-08
urlhttps://doi.org/10.11588/data/UUMEDI
projectsSYSSIFOSS - Synthetic structural remote sensing data for improved forest inventory models
VirtuaLearn3D - Virtual Laser Scanning for Machine Learning Algorithms in Geographic 3D Point Cloud Analysis

Editor: Webmaster Team
Latest Revision: 2024-06-14
zum Seitenanfang/up