Siegel der Universität Heidelberg
Bild / picture

Den Wolken auf der Spur

13. Februar 2007

Helmholtz Gemeinschaft Deutscher Forschungszentren fördert Vernetzung mit den Hochschulen – Arbeitsgruppe um Hochschuldozent Dr. Volker Ebert von der Heidelberger Ruprecht-Karls-Universität am Projekt "Aerosol Cloud Interactions" beteiligt – Heidelberger Wolken-Wasserdampf-Spektrometer weltweit wohl einmalig


Die Klimaentwicklung der kommenden Jahrhunderte ist derzeit in allen Medien ein großes Thema, doch die aus den Modellen gemachten Annahmen über das zukünftige Klima können nur so gut sein wie die Datenbasis. Und diese ist in einigen Punkten durchaus noch verbesserungsfähig. So ist "die genaue Beschreibung der Wolken in allen Klimamodellen ein Schwachpunkt", erläutert Hochschuldozent Dr. Volker Ebert vom Institut für Physikalische Chemie der Heidelberger Ruprecht-Karls-Universität.

Längst ist es aber einem Institut oder einer Forschungseinheit nicht mehr möglich, derartig komplexe Probleme wie die Wolkenbildung alleine zu lösen. Das hat auch die Helmholtz Gemeinschaft Deutscher Forschungszentren erkannt und ihre Vernetzung mit den Hochschulen seit einigen Jahren durch ein gesondertes Programm voran getrieben, bei dem in so genannten "Virtuellen Instituten" verschiedene Partner ihre Kompetenzen bündeln. So wie in dem in der aktuellen Ausschreibungsrunde bedachten Projekt "Aerosol Cloud Interactions", das am Forschungszentrum Karlsruhe unter der Leitung von Professor Wolfgang Leisner angesiedelt ist und an dem sich Forscher beispielsweise von den Hochschulen aus Zürich, Mainz, Frankfurt und eben Heidelberg beteiligen. Die Arbeitsgruppe um Volker Ebert trägt dabei entscheidend zur Messtechnik bei, denn das am Institut für Physikalische Chemie entwickelte spezielle Wolken-Wasserdampfspektrometer dürfte weltweit wohl einmalig sein.

Um die Bildung von Wolken zu untersuchen, gibt es verschiedene Möglichkeiten: Einerseits kann man Messungen direkt vor Ort in der Atmosphäre realisieren. Das bringt allerdings den Nachteil mit sich, dass den Wolken praktisch nachgeflogen werden muss. Etwas praktikabler ist es da schon, die Wolkenbildung im Labor nachzustellen. Hierfür wurde am Forschungszentrum Karlsruhe die Klimakammer AIDA konzipiert. Die an die gleichnamige Oper von Puccini erinnernde Abkürzung, die für Aerosol Interaction and Dynamics in the Atmosphere steht, beschreibt eine etwa 83 Kubikmeter große, riesige "Thermoskanne", die auf bis zu minus 100 Grad Celsius gekühlt werden kann.

Zur Herstellung von Wolken füllt man diese mit angefeuchteter Luft, bis sich die Innenwände mit Wasser oder Eis überziehen. Anschließend vermindert man den Druck in der Kammer rapide, was überraschenderweise auch die "Tragfähigkeit" der Luft für Wasserdampf drastisch verringert. Als Folge davon bilden sich aus dem jetzt überschüssigen Wasserdampf – ganz wie in der freien Natur – je nach Temperatur Wassertröpfchen oder Eiskristalle und somit Wolken. Zusätzlich stehen Aerosole, das sind kleinste luftgetragene Staubpartikel im Bereich von unter ein tausendstel Millimeter Durchmesser, im Verdacht, die Wolkenbildung ganz entscheidend zu beeinflussen. Auch das soll im Rahmen des Virtuellen Institutes sowohl für natürliche Aerosole wie beispielsweise Saharastaub als auch für vom Menschen verursachte Aerosole, wie Rußpartikel aus Dieselmotoren, intensiv untersucht werden.

Von entscheidender Bedeutung ist dabei die Frage nach dem für die Wolkenbildung erforderlichen Mindestüberschuss an Wasserdampf und dessen Lebensdauer. Die Arbeiten der Heidelberger Wissenschaftler um Volker Ebert zielen darauf, den Wasserdampf selektiv, schnell, hochpräzise und erstmals auch innerhalb der Wolken, das heißt ohne die sonst notwendige Entnahme einer Luftprobe, zu ermöglichen und gleichzeitig die bisher notwendige Kalibration der Messgeräte zu vermeiden. Dies gelingt überraschenderweise mit einem mehrfachen Technologietransfer: So erfasst das in Heidelberg entwickelte Laserspektrometer den Wasserdampf einerseits mit den auch zur Internetdatenübertragung eingesetzten Diodenlasern. Andererseits werden die vielfältigen Störungen, die eine Messung innerhalb der Wolke mit sich bringt, mit Methoden korrigiert, die eigentlich für die spektroskopische Diagnose von Verbrennungskraftwerken entwickelt wurden. Diese Messungen innerhalb des Kraftwerksbrennraums wurden ebenfalls massiv von kleinen Partikeln, hier aber aus Asche und Schlacke, gestört, so dass die Technik auf AIDA übertragen werden konnte.

So funktioniert die Zusammenarbeit mit dem Forschungszentrum Karlsruhe bereits seit drei Jahren. "Jetzt ist aber die gemeinsame Forschung voll finanziert", ist Volker Ebert sichtlich froh über das Zustande kommen des Virtuellen Instituts und gibt gleich einen Ausblick auf die zukünftigen Arbeiten rund um die Messtechnik. Da soll unter anderem zunächst einmal die Präzision und Kalibrationsfreiheit validiert werden, aber auch an die Erhöhung der Nachweisgrenzen ist gedacht, damit in sehr kalten Wolken gemessen werden kann und so neue Erkenntnisse zur Wolkenbildung gewonnen werden können.

Stefan Zeeh



Rückfragen bitte an:
Hochschuldozent Dr. Volker Ebert
Physikalisch-Chemisches Institut
Im Neuenheimer Feld 229
69120 Heidelberg
Tel. 06221 545004
volker.ebert@pci.uni-heidelberg.de

Allgemeine Rückfragen von Journalisten auch an:
Dr. Michael Schwarz
Pressesprecher der Universität Heidelberg
Tel. 06221 542310, Fax 542317
michael.schwarz@rektorat.uni-heidelberg.de
www.uni-heidelberg.de/presse

Seitenbearbeiter: Email
zum Seitenanfang