Verschiedene Verpackungshelfer in pflanzlichen und tierischen Zellen
26. Juli 2007
Evolution von Transportregulatoren ist nicht parallel verlaufen – Wissenschaftler vom Zentrum für Molekularbiologie der Pflanzen (ZMBP) der Universität Tübingen veröffentlichen in Zusammenarbeit mit Kollegen der Universität Heidelberg und des Kölner Max-Planck-Instituts für Pflanzenzüchtung in "Nature" neueste Ergebnisse
In Zellen werden dauernd neue Stoffe hergestellt, die für Transporte innerhalb der Zelle sorgfältig verpackt werden müssen. Dafür werden sie von so genannten Vesikeln (Bläschen, die von einer Membran umhüllt sind) umschlossen. Auf der Verpackung wird die Adresse angegeben, an die die Stoffe geliefert werden sollen. Viele solcher Stofftransporte und Verpackungsarbeiten finden gleichzeitig statt. Die Ausstattung der Zellen ist für diese Arbeiten bei höher organisierten tierischen und pflanzlichen Organismen sehr ähnlich: Unter anderem müssen neu hergestellte Stoffe zu einer zentralen Stelle, dem Golgi-Apparat, transportiert werden, von wo aus sie zu verschiedenen Zielen weitergeleitet werden. Nun haben Wissenschaftler vom Zentrum für Molekularbiologie der Pflanzen (ZMBP) der Universität Tübingen in Zusammenarbeit mit Kollegen von der Universität Heidelberg und dem Kölner Max-Planck-Institut für Pflanzenzüchtung entdeckt, dass es im Detail doch Unterschiede gibt.
Zu einem Transportregulator in tierischen Zellen, der am Golgi-Apparat die Verpackung in Vesikel steuert, gibt es einen nah verwandten Regulator in Pflanzen. Doch der wurde durch eine ganz andere Aufgabe in der Zelle entdeckt. Das weist auf eine für die Wissenschaftler überraschende Trennung in der Evolution der Transportregulatoren in tierischen und pflanzlichen Zellen hin. Ihre Forschungsergebnisse veröffentlichen die Tübinger Wissenschaftler Sandra Richter, Niko Geldner, Jarmo Schrader, Hanno Wolters, York-Dieter Stierhof und Gerd Jürgens vom ZMBP zusammen mit ihren Kollegen David Robinson und Csaba Koncz in der aktuellen Ausgabe der Fachzeitschrift Nature vom 26. Juli 2007.
Die Versuchspflanze der Wissenschaftler ist – wie häufig in der Genetik – die Ackerschmalwand, Arabidopsis thaliana. Ihr bekanntester Transportregulator namens GNOM ähnelt sehr dem Regulator, der in Zellen von Säugetieren am Golgi-Apparat die Stoffverpackung in Vesikel steuert. Obwohl diese Aufgabe auch in Pflanzenzellen zu erledigen ist, regelt GNOM stattdessen an so genannten Endosomen die Verpackung von Stoffen, die zur Zellmembran, die die ganze Zelle umschließt, transportiert werden. Endosomen sind von einer Membran umhüllte Blasen, die in Vesikeln verpackte Stoffe von der Zellmmembran erhalten, sie sortieren und neu verpacken – entweder ins Zellinnere zum Abbau oder zurück zur Zellmembran zur Wiederverwendung (Recycling). Auf diese Weise sorgt GNOM dafür, dass Transporter des Pflanzenhormons Auxin an die Zellmembran, ihren Wirkort, gelangen, und somit hat GNOM eine wichtige Aufgabe in der Entwicklung der Pflanzen. Wenn es fehlt, kann die Pflanze keine Achse ausbilden, weiß also nicht so recht, wo oben und unten ist, und wächst im Extremfall als Ball.
Doch wie wird dann in der Arabidopsis-Zelle die Vesikelverpackung am Golgi-Apparat geregelt, wenn GNOM woanders wirkt? Das, so haben die Forscher festgestellt, übernimmt ein naher Verwandter von GNOM, der deshalb GNL1 genannt wurde (englisch: GNOM-LIKE1). Interessanterweise konnte GNOM die Funktion von GNL1 ersetzen. Das bedeutet, dass beide Regulatoren die ursprüngliche Funktion am Golgi-Apparat ausüben, während GNOM eine zusätzliche neue Aufgabe hat.
"Wir wissen, dass es in Einzellern nur einen Transportregulator aus dieser Gruppe gibt. Er hat die Ursprungsfunktion, am Golgi-Apparat die Vesikelverpackung zu steuern", erklärt Sandra Richter, die Doktorandin am ZMBP ist. In tierischen Zellen wurde die Funktion so übernommen, während bei Pflanzen der ursprüngliche Regulator verdoppelt wurde, und eine Kopie habe wahrscheinlich andere Funktionen übernommen. In der Evolution seien dann unterschiedliche Spezialisierungen bei Tieren und Pflanzen erfolgt. "Vermutlich hat die Spezialisierung relativ spät innerhalb des Pflanzenreichs statt gefunden", sagt Sandra Richter. "Denn zum Beispiel hat ein Moos – wie Tiere auch – nur ein Exemplar des Transportregulators, während Blütenpflanzen mehrere, spezialisierte Exemplare haben." Die Evolution der Tiere hat hingegen für den Kreislauf zwischen Zellmembran und Endosomen eine neue Klasse von Transportregulatoren hervorgebracht. Dies ist ein gutes Beispiel dafür, dass die beiden großen Reiche der Lebewesen in der Evolution immer wieder verschiedene Lösungen für dasselbe Problem gefunden haben.
Nähere Informationen:
– Die Publikation in "Nature"
Sandra Richter, Niko Geldner, Jarmo Schrader, Hanno Wolters, York-Dieter Stierhof, Gabino Rios, Csaba Koncz, David G. Robinson & Gerd Jürgens: Functional diversification of closely related ARF-GEFs in protein secretion and recycling. Nature, 26. Juli (Band 448)
Ansprechpartner:
Prof. Gerd Jürgens
ZMBP – Zentrum für Molekularbiologie der Pflanzen
Entwicklungsgenetik
Auf der Morgenstelle 3
72076 Tübingen
Tel. 07071 2978887, Fax 295797
gerd.juergens@uni-tuebingen.de
Für den Heidelberger Teil:
Prof. David G. Robinson
Universität Heidelberg
Heidelberger Institut für Pflanzenwissenschaften
Abteilung Zellbiologie
Tel. 06221 546406, Fax 546404
david.robinson@urz.uni-heidelberg.de
Allgemeine Rückfragen von Journalisten auch an:
Dr. Michael Schwarz
Pressesprecher der Universität Heidelberg
michael.schwarz@rektorat.uni-heidelberg.de
Zu einem Transportregulator in tierischen Zellen, der am Golgi-Apparat die Verpackung in Vesikel steuert, gibt es einen nah verwandten Regulator in Pflanzen. Doch der wurde durch eine ganz andere Aufgabe in der Zelle entdeckt. Das weist auf eine für die Wissenschaftler überraschende Trennung in der Evolution der Transportregulatoren in tierischen und pflanzlichen Zellen hin. Ihre Forschungsergebnisse veröffentlichen die Tübinger Wissenschaftler Sandra Richter, Niko Geldner, Jarmo Schrader, Hanno Wolters, York-Dieter Stierhof und Gerd Jürgens vom ZMBP zusammen mit ihren Kollegen David Robinson und Csaba Koncz in der aktuellen Ausgabe der Fachzeitschrift Nature vom 26. Juli 2007.
Die Versuchspflanze der Wissenschaftler ist – wie häufig in der Genetik – die Ackerschmalwand, Arabidopsis thaliana. Ihr bekanntester Transportregulator namens GNOM ähnelt sehr dem Regulator, der in Zellen von Säugetieren am Golgi-Apparat die Stoffverpackung in Vesikel steuert. Obwohl diese Aufgabe auch in Pflanzenzellen zu erledigen ist, regelt GNOM stattdessen an so genannten Endosomen die Verpackung von Stoffen, die zur Zellmembran, die die ganze Zelle umschließt, transportiert werden. Endosomen sind von einer Membran umhüllte Blasen, die in Vesikeln verpackte Stoffe von der Zellmmembran erhalten, sie sortieren und neu verpacken – entweder ins Zellinnere zum Abbau oder zurück zur Zellmembran zur Wiederverwendung (Recycling). Auf diese Weise sorgt GNOM dafür, dass Transporter des Pflanzenhormons Auxin an die Zellmembran, ihren Wirkort, gelangen, und somit hat GNOM eine wichtige Aufgabe in der Entwicklung der Pflanzen. Wenn es fehlt, kann die Pflanze keine Achse ausbilden, weiß also nicht so recht, wo oben und unten ist, und wächst im Extremfall als Ball.
Doch wie wird dann in der Arabidopsis-Zelle die Vesikelverpackung am Golgi-Apparat geregelt, wenn GNOM woanders wirkt? Das, so haben die Forscher festgestellt, übernimmt ein naher Verwandter von GNOM, der deshalb GNL1 genannt wurde (englisch: GNOM-LIKE1). Interessanterweise konnte GNOM die Funktion von GNL1 ersetzen. Das bedeutet, dass beide Regulatoren die ursprüngliche Funktion am Golgi-Apparat ausüben, während GNOM eine zusätzliche neue Aufgabe hat.
"Wir wissen, dass es in Einzellern nur einen Transportregulator aus dieser Gruppe gibt. Er hat die Ursprungsfunktion, am Golgi-Apparat die Vesikelverpackung zu steuern", erklärt Sandra Richter, die Doktorandin am ZMBP ist. In tierischen Zellen wurde die Funktion so übernommen, während bei Pflanzen der ursprüngliche Regulator verdoppelt wurde, und eine Kopie habe wahrscheinlich andere Funktionen übernommen. In der Evolution seien dann unterschiedliche Spezialisierungen bei Tieren und Pflanzen erfolgt. "Vermutlich hat die Spezialisierung relativ spät innerhalb des Pflanzenreichs statt gefunden", sagt Sandra Richter. "Denn zum Beispiel hat ein Moos – wie Tiere auch – nur ein Exemplar des Transportregulators, während Blütenpflanzen mehrere, spezialisierte Exemplare haben." Die Evolution der Tiere hat hingegen für den Kreislauf zwischen Zellmembran und Endosomen eine neue Klasse von Transportregulatoren hervorgebracht. Dies ist ein gutes Beispiel dafür, dass die beiden großen Reiche der Lebewesen in der Evolution immer wieder verschiedene Lösungen für dasselbe Problem gefunden haben.
Nähere Informationen:
– Die Publikation in "Nature"
Sandra Richter, Niko Geldner, Jarmo Schrader, Hanno Wolters, York-Dieter Stierhof, Gabino Rios, Csaba Koncz, David G. Robinson & Gerd Jürgens: Functional diversification of closely related ARF-GEFs in protein secretion and recycling. Nature, 26. Juli (Band 448)
Ansprechpartner:
Prof. Gerd Jürgens
ZMBP – Zentrum für Molekularbiologie der Pflanzen
Entwicklungsgenetik
Auf der Morgenstelle 3
72076 Tübingen
Tel. 07071 2978887, Fax 295797
gerd.juergens@uni-tuebingen.de
Für den Heidelberger Teil:
Prof. David G. Robinson
Universität Heidelberg
Heidelberger Institut für Pflanzenwissenschaften
Abteilung Zellbiologie
Tel. 06221 546406, Fax 546404
david.robinson@urz.uni-heidelberg.de
Allgemeine Rückfragen von Journalisten auch an:
Dr. Michael Schwarz
Pressesprecher der Universität Heidelberg
michael.schwarz@rektorat.uni-heidelberg.de
Seitenbearbeiter:
Email