Sprungbrett der Evolution
Was Hohltiere vom Werden der Menschen verraten
von Thomas Holstein
In der Hauptsache bestehen sie aus Wasser, und innen sind sie hohl. Auf den ersten Blick scheinen Hohltiere nicht gerade viel versprechende Objekte molekularer Forschung zu sein. Und doch kann die Wissenschaft viel von ihnen erfahren, zum Beispiel, worauf die außergewöhnliche Regenerationsfähigkeit der schlicht gebauten Wesen beruht, die sich nahezu beliebig regenerieren können – selbst dann noch, wenn man sie in 100 Stücke zerteilt. Diese erstaunliche Regenerationskraft ist längst nicht die einzige bemerkenswerte Fähigkeit der faszinierenden Tiere. Von ihnen ist auch Erstaunliches über das Wirken der Evolution zu erfahren, die wichtige Gengruppen als Sprungbrett benutzt hat – bis hin zum Menschen.
Nesseltiere bestehen zu 99 Prozent aus Wasser und gehören zu den ältesten heute noch lebenden Tieren. Sie sind lebende Fossilien und stehen an der Basis der Evolution aller höheren Tiere, nahe dem Übergang von der einzelligen zur mehrzelligen Organisationsstufe. Nachgewiesen wurden Nesseltiere bereits in den Fossilien der Ediacara-Fauna vor 600 Millionen Jahren, lange bevor die Mehrheit aller heute bekannten Tierstämme in der so genannten kambrischen Explosion entstanden ist.
Nesseltiere bleiben in ihrer Entwicklung auf dem so genannten Gastrula-Stadium stehen: Sie besitzen nur eine Körperachse, die zu einem Sackdarm führt, in den Nahrung hineinfließt und aus dem in umgekehrter Richtung Unverdauliches ausgeschieden wird. Höher entwickelte Tiere durchlaufen diese Entwicklungsstufe nur als kurzes Zwischenstadium, aus dem heraus sich ein Organismus mit Mund- und Darmöffnung entwickelt. Nesseltiere besitzen ein primitives Nervensystem, das als einfaches neuronales Netz organisiert ist. Ein zentrales Nervensystem fehlt, manche verfügen allerdings bereits über komplexe Augen und andere Sinnesorgane.
Nesseltiere treten häufig in zwei Formen auf: als festsitzende Polypen und als freischwimmende Quallen (Medusen), deren grazile Schönheit der berühmte Zoologe Ernst Haeckel in seinem Buch „Kunstformen der Natur“ eindrucksvoll dokumentiert hat. Viele Polypenstöcke der Korallen haben als Gestein und Riff bildende Formen im wahrsten Sinne des Wortes unsere Erdgeschichte geprägt. Berühmt ist auch die seit der Antike bekannte, nahezu unbegrenzte Regenerationsfähigkeit der Tiere: Ähnlich der aus der griechischen Mythologie bekannten vielköpfigen „Hydra von Lerna“ können viele Polypen ihre mit giftigen Nesselzellen besetzten Köpfe regenerieren.
Manche Nesseltiere zählen zu den giftigsten Tieren der Welt. Ein Beispiel ist die tropische Seewespe, eine Würfelqualle, die sich von Fischen ernährt – ein Kontakt mit ihr kann auch für den Menschen tödlich enden. Aber auch schon die Begegnung eines Schwimmers mit weitaus weniger gefährlichen Quallen oder Polypen kann bekanntlich sehr schmerzhafte Spuren hinterlassen.
Entladung in Nanosekunden
Die toxische Wirkung der Nesseltiere ist auf die Zellen zurückzuführen, denen sie ihren Namen verdanken: die Nesselzellen. Dabei handelt es sich um hoch spezialisierte Sinneszellen, die jeweils ein komplexes kleines Organ, die Nesselkapsel beherbergen, wissenschaftlich korrekt „Nematocyste“ oder „Cnide“ genannt. Im Innern der zylindrisch geformten, circa zehn Mikrometer kleinen Nesselkapsel ist ein langer Schlauch aufgerollt. Das ist der Grundbauplan der Nesselkapsel – von ihm ausgehend hat die Natur sehr viele, zum Teil sehr komplexe Nesselkapseln gebildet, die alle zum Beutefang und zur Verteidigung dienen.
Die Funktionsweise der Nesselzellen ist außerordentlich bemerkenswert. Wird eine Nesselzelle von außen mechanisch gereizt, etwa von einem Beutetier, entlädt sie sich innerhalb kürzester Frist: Der in der Kapsel aufgerollte Schlauch schießt wie eine Harpune heraus, durchdringt die Außenhaut des Opfers oder umwickelt dessen Körper. Unsere Hochgeschwindigkeitsanalysen haben gezeigt, dass die gesamte Entladung selbst bei den komplexesten Kapseltypen in weniger als drei Millisekunden abgeschlossen ist; die kritische Phase der Entladung läuft sogar im Nanosekundenbereich ab. Dabei werden Beschleunigungen erzielt, die mehr als das 5 000 000fache der Erdbeschleunigung ausmachen – die Nesselkapselentladung zählt damit zu den schnellsten Prozessen in der Biologie.
Auf molekularer Ebene kann die Entladung als Wechselspiel von hohem Druck und elastisch gespannter Kapselwand erklärt werden. Der hohe Druck resultiert aus der hohen Konzentration von Poly-Gamma-Glutamat (zwei Mol) und assoziierter Kationen (Innendruck mehr als 150 bar). Als wesentliche Strukturproteine der elastischen Kapselwand haben wir in den letzten Jahren eine Familie ungewöhnlich kleiner Kollagene („Minikollagene“) sowie eine neue Proteinfamilie (NOWA) charakterisiert. Wenn die Kapsel innerhalb eines „riesigen“ Bläschens, das Teil der zellulären Proteinsynthesemaschinerie ist, gebildet wird, liegen diese Proteine in löslicher Form vor und schließen sich zunächst zu einer vorläufigen Struktur zusammen, aus der anschließend durch eine Polymerisierungsreaktion die endgültige Kapsel hervorgeht. Das Proteom einer Nesselzelle, also die Gesamtheit aller in der Zelle vorhandenen Proteine, umfasst circa 200 Proteine, deren Struktur und Funktion derzeit in einem eigenen Proteom-Projekt identifiziert werden.
Im Zentrum unserer Arbeiten im Heidelberger Institut für Zoologie steht die Frage, wie sich Nesseltiere entwickeln. Ein unerwartetes Ergebnis der vergleichenden Entwicklungsbiologie und Genomforschung ist, dass tierische Organismen offenbar schon zu einem sehr frühen Zeitpunkt der Evolution über ein erstaunlich großes Repertoire von Genen verfügten, mit dem sie die Entwicklung des Körperbaus steuern. Auf der Suche nach solchen Genen haben wir die Nesseltiere als wichtigste Vertreter einfacher vielzelliger Organismen ausgewählt, deren gestaltbildenden Gene untersucht und mit denen höher entwickelter Tiere verglichen.
Eine Schlüsselrolle spielen die so genannten Wnt-Gene. Bei diesen Genen handelt es sich um eine Gruppe von Entwicklungsgenen, die bei allen Tieren dafür verantwortlich sind, dass sich eine Körperachse ausbildet und die jeweiligen Organe sowie das Nervensystem heranreifen. Die Gene liefern mit Zucker bestückte Signalmoleküle (Glykoproteine). Diese Moleküle beauftragen ihre Zielzellen, sich in eine bestimmte Richtung zu entwickeln.
Millionenjahre alte Gengruppen
Bei der Seeanemone Nematostella vectensis fanden wir zwölf Wnt-Genfamilien, was in mehrfacher Hinsicht erstaunlich ist: Die einfachen Nesseltiere besitzen damit mehr Wnt-Entwicklungsgene als manch höher entwickelte Tiere, etwa Insekten oder Fadenwürmer (Nematoden), die nur über sieben Gruppen dieser gestaltgebenden Erbanlagen verfügen. Anders als bisher angenommen, scheint es also keinen direkten Zusammenhang zwischen der Anzahl der Gene und der morphologischen Komplexität tierischer Organismen zu geben. Säugetiere, der Mensch eingeschlossen, besitzen wie die Nesseltiere zwölf Wnt-Gengruppen, wobei bei Säugern mindestens eines der Entwicklungsgene während der Evolution verlorengegangen und durch ein neues ersetzt worden ist. Bei Protozoen, die nur aus einer einzigen Zelle bestehen, und bei Organismen, die wie Schleimpilze zwar Zellkolonien bilden, sich aber nicht zu echten Vielzellern entwickeln, sind bisher kein Wnt-Gene nachgewiesen worden. Das Auftreten dieser Gene vor rund 650 Millionen Jahren dürfte die Voraussetzung für das Entstehen von Vielzellern gewesen sein.
Die derzeit erfolgenden Erbgutvergleiche machen mehr und mehr deutlich, dass sich Nesseltiere und höher entwickelte Wirbeltiere (Vertebraten) sehr viel ähnlicher sind als man bislang glaubte. So ist die Vielfalt der von tierischen Organismen bekannten Signalwege bereits im Erbgut der Nesseltiere angelegt. Die neuen genetischen Daten unterstreichen zudem unsere Entdeckung, dass in manchen Tiergruppen viele dieser alten Gene verlorengegangen sind; umgekehrt belegen die Daten, wie bedeutend diese Gene für die rasche Expansion des genetischen Repertoires während der Evolution und für das Entstehen der Vielzelligkeit gewesen sein müssen.
Wie die genetische Komplexität während der Evolution der morphologischen Komplexität vorangeschritten ist, zeigt das Beispiel der „mesodermalen“ Gene. Dabei handelt es sich um Erbanlagen, die während der Entwicklung des Embryos dafür sorgen, dass sich ein mittleres Keimblatt, das so genannte Mesoderm, ausbildet. Nesseltiere besitzen lediglich zwei Keimblätter: ein äußeres schützendes Ektoderm und ein inneres, der Verdauung dienendes Entoderm. Ein Mesoderm, aus dem bei höheren Lebewesen das Gefäßsystem und die Muskulatur hervorgehen, besitzen Nesseltiere nicht. Nichtsdestotrotz verfügen Nesseltiere über den kompletten Katalog mesodermaler Gene, die bei ihnen für das Heranreifen der so genannten Epithelmuskelzellen zuständig sind – das sind Zellen, die sich im äußeren Ektoderm finden und die mit muskelzellähnlichen kontraktilen Fasern ausgestattet sind.
Die Gene für die Embryonalentwicklung und das Heranreifen von Zellen zu bestimmten Zelltypen mit besonderen Aufgaben, etwa zur Muskelzelle, reichen also bis in die Frühzeit der Evolution zurück. Wie es dazu kam, dass die Natur im Laufe der Evolution immer wieder die gleichen Signalketten in neuen Zelltypen, Strukturen und Organen verwendet hat, ist noch gänzlich unverstanden und wird zurzeit intensiv erforscht.
Das Phänomen der „Regeneration“ ist ein anschauliches Beispiel dafür, wie tief basale Entwicklungsprozesse im Stammbaum des Lebens verankert sind. Bestimmte Vertreter der Nesseltiere, die Süßwasserpolypen (Hydrozoen), sind die „Champions der Regeneration“ im Tierreich, was sich eindrucksvoll zeigen lässt, schneidet man einen Süßwasserpolypen in 100 Teile: Nach wenigen Tagen sind daraus 100 neue, wohlgeformte Polypen entstanden. Dass aus wenigen Zellen wieder vollständige Körper entstehen können, erscheint wie ein Wunder. Doch nicht nur Polypen, auch Plattwürmer, Seesterne und Salamander sind dieses Wunders fähig und regenerieren Gliedmaßen und innere Organe unmittelbar nachdem das Original abhanden gekommen ist.
Bei Süßwasserpolypen und weiteren regenerierenden Tieren konnten in den letzten Jahren Gene, Proteine und Signalwege identifiziert werden, die zu dieser erstaunlichen Regenerationskraft verhelfen. Auch wir Menschen besitzen grundsätzlich noch die Gene, mit deren Hilfe sich einfache Tiere regenerieren – die Kluft zwischen diesen Organismen und dem Menschen ist also geringer als gedacht.
Regenerierende Organismen ersetzen verlorene oder beschädigte Körperteile und Organe mithilfe von Stammzellen: Süßwasserpolypen etwa verfügen zeit ihres Lebens über eine Population von Stammzellen, die sie bei Bedarf mobilisieren und nutzen können, um die verschiedensten Teile des Körpers aus ihnen entstehen zu lassen. Andere Organismen, etwa Molche und Fische, wandeln bereits ausgereifte („differenzierte“) Zellen, die sich also bereits zu Haut-, Muskel- oder Nervenzellen spezialisiert haben, wieder in Stammzellen um, ein Vorgang, der „Dedifferenzierung“ genannt wird. Auch Menschen besitzen in vielen Geweben Stammzellen. Die Möglichkeit dieser „erwachsenen“ (adulten) Stammzellen, bestimmte Zelltypen zu regenerieren, ist allerdings begrenzt. In allen Fällen gilt es zu verstehen, woher die regenerierenden Zellen ihre Anweisungen erhalten und welche Gene, Proteine und Signalwege für die Regenerationsfähigkeit verantwortlich sind.
Beim Süßwasserpolypen konnten wir zeigen, dass die Produkte (die Proteine) der Wnt-Gene nicht nur während der Embryonalentwicklung oder der Knospung entstehen. Sie entstehen auch dann, wenn ein Süßwasserpolyp, der seinen oberen Körperteil, seinen „Kopf“, verloren hat, mit der Regeneration beginnt. Wir wollten wissen: Wie viele Zellen sind erforderlich, damit ein neuer Kopf entstehen kann? Um diese Frage zu beantworten, haben wir die regenerierende Spitze des Polypen in einzelne Zellen zerlegt und diese Zellen zunächst zu Gruppen unterschiedlicher Größe heranwachsen lassen. Gibt man diese Zellnester zu Ansammlungen von Körperzellen, kann man herausfinden, wie vieler Zellen es für die Kopfbildung bedarf. Das Ergebnis: Nur etwa zehn Zellen sind dafür erforderlich.
Neben den Wnt-Molekülen sind noch weitere signalgebende Moleküle und regulatorische Proteine an der Regeneration des Süßwasserpolypen beteiligt – ausnahmslos Gene, die auch während der Entwicklung höherer Tiere, einschließlich der der Säugetiere, aktiv sind. Wir gehen daher davon aus, dass es einen gemeinsamen Mindestsatz von Genen gibt, der für die Musterbildung und das Wachstum von Gliedmaßen und Organen komplexer Tiere benötigt wird.
Wir stehen erst am Anfang unserer Arbeiten – dennoch sind schon heute faszinierende Anwendungsmöglichkeiten vorstellbar. Die Forschung an Süßwasserpolypen und anderen einfachen Entwicklungssystemen könnte aufdecken, wie entwicklungssteuernde Gene und Proteine in der Regeneration an- und wieder ausgeschaltet werden könnten. Dieses Wissen wäre vielleicht nutzbar, um die Regeneration von verletztem oder erkranktem Gewebe gezielt zu veranlassen – auch das des Menschen.
|
Kontakt:
holstein@uni-hd.de,
Telefon: 0 62 21/54 56 79