Bereichsbild
Emmy Noether-Nachwuchsgruppe

Emmy Noether Logo 180-186x109px

 
Contact

Heidelberg University
Institute of Earth Sciences
Im Neuenheimer Feld 234
69120 Heidelberg

Phone: +49 6221 54-5983
Fax: +49 6221 54-5503

 

Past Ocean Dynamics

Banner Data 1200x320px 2x

Data

The 231Pa/230Th circulation proxy is based on the idea of measuring the 231Pa and 230Th generated by the decay of dissolved 235U and 234U in the overlying water column (so called excess fraction). However, there are also fractions of 231Pa and 230Th in the sediment not originating from the water column. There is a detrital and an authigenic fraction as well, which needs to be corrected for. The underlying assumptions for these corrections have been presented by Henderson and Anderson (2003), which have been later refined by Bourne et al. (2012).

Since the final 231Pa/230Th (excess) ratio is a result of these assumptions and calculations it is important to provide the raw data of isotopic concentrations to allow independent re-calculations. Thus, we provide here a (frequently updated) .txt-file for download containing the sedimentary concentrations of 231Pa, 230Th, 238U,232Th, sample depth, age and references from all data generated by our working group within the last years with focus on the Atlantic Ocean.

 

Download Pa/Th Data compilation

 

Literature

Today the 231Pa/230Th circulation proxy is an invaluable tool in paleoceanography, although measuring it is still a demanding analytical task (in particular 231Pa). Besides the usually extreme low quantities of 231Pa in any material another problem is the inexistence of another long-living protactinium isotope (the most stable one is 233Pa with a half-live of 27 days). In the past measurements have been performed by counting α- and β-decays of the sample. While ICP-MS has been emerged as the method of choice nowadays there have been also successful attempts by TIMS and even AMS.

However, reconstructing ocean circulation was not the first application of 231Pa and 230Th in marine science. Since the pioneering studies on the contents of 231Pa in sea-water and sediments in the sixties and seventies both radio-isotopes have been mostly used for the purposes of dating and assessing particle fluxes. In particular the work by Robert Anderson in the eighties was groundbreaking for understanding their cycling in the ocean. It was not before 1996, until 231Pa/230Th was used the first time in order to reconstruct ocean circulation by Ein-Fen Yu, Roger Francois and Michael Bacon. They examined the strength of the Atlantic Meridional Overturning (AMOC) during the Last Glacial Maximum (LGM). Underpinned by theoretical considerations in 2000 by Olivier Marchal, Roger Francois, Thomas Stocker and Fortunat Joos it took another eight years until the first high-resolution down-core profile of 231Pa/230Th was measured from the Atlantic Ocean and interpreted as a record of past AMOC strength (McManus et al. 2004).

Please find in the following a non-exhaustive list of publications dealing with 231Pa/230Th in paleoceanography and beyond. The items of this list span many aspects related to 231Pa/230Th and may provide a helpful introduction to this topic. Please don’t hesitate to inform us about publications we might have missed (E-Mail joerg.lippold@geow.uni-heidelberg.de). Thank you.

2023:

  • Levier, M., Roy-Barman, M., Foliot, L., Dapoigny, A., & Lacan, F. 2023. Distribution of Pa in the Atlantic sector of the Southern Ocean: Tracking scavenging during water mass mixing along neutral density surfaces. Deep Sea Research Part I: Oceanographic Research Papers, 194, 103951.

2022:

  • Zheng, J., Chen, T., Ng, H.C., Robinson, L., Zheng, X.Y.,  Shi, X., Huang, M. 2022 Determination of Picogram-per-Gram Concentrations of 231Pa and 230Th in Sediments by Melt Quenching and Laser Ablation Mass Spectrometry, Analytical Chemistry, 15, 2013–2033.
  • Sasaki, Y., Kobayashi, H., and Oka, A. 2022 Global simulation of dissolved 231Pa and 230Th in the ocean and the sedimentary 231Pa∕230Th ratios with the ocean general circulation model COCO ver4.0, Geoscientific Model Development, 15, 2013–2033.
  • Schimmenti, D., F. Marcantonio, C.T. Hayes, J. Hertzberg, M. Schmidt, and J. Sarao. 2022 Insights into the deglacial variability of phytoplankton community structure in the eastern equatorial Pacific Ocean using [231Pa/230Th]xs and opal-carbonate fluxes, Scientific Reports, 12(1).

2021:

  • Roy-Barman, M., Foliot, L., Douville, E., Leblond, N., Gazeau, F., Bressac, M., Wagener, T., Ridame, C., Desboeufs, K., and Guieu, C. 2021 Contrasted release of insoluble elements (Fe, Al, rare earth elements, Th, Pa) after dust deposition in seawater: a tank experiment approach, Biogeosciences, 18, 2663–2678.
  • Kipp, L.E., McManus, J.F., Kienast, M., 2021. Radioisotope constraints of Arctic deep water export to the North Atlantic. Nature Communications 12, 3658.
  • Chen, S.-Y.S., Marchal, O., Lerner, P.E., McCorkle, D.C. and Rutgers van der Loeff, M.M., 2021. On the cycling of 231Pa and 230Th in benthic nepheloid layers. Deep Sea Research Part I: Oceanographic Research Papers, 177: 103627.
  •  Luo, Y., Lippold, J., Allen, S.E., Tjiputra, J., Jaccard, S.L. and Francois, R., 2021. The influence of deep water circulation on the distribution of 231Pa and 230Th in the Pacific Ocean. Earth and Planetary Science Letters, 554: 116674.
  • Ronge, T.A., Lippold, J., Geibert, W., Jaccard, S.L., Mieruch-Schnülle, S., Süfke, F. and Tiedemann, R., 2021. Deglacial patterns of South Pacific overturning inferred from 231Pa and 230Th. Scientific Reports, 11(1): 20473.
  • Xu, Q., Xiao, W., Wang, R., Süfke, F., Lippold, J. and Not, C., 2021. Driving Mechanisms of Sedimentary 230Th and 231Pa Variability in the Western Arctic Ocean Through the Last Glacial Cycle. Paleoceanography and Paleoclimatology, 36, 7.
  • Zhang, X., Yang, W., Qiu, Y. and Zheng, M., 2021. Adsorption of Th and Pa onto particles and the effect of organic compounds in natural seawater. Journal of Oceanology and Limnology.

2020:

  • Pavia, F. J., Anderson, R. F., Pinedo‐Gonzalez, P., Fleisher, M. Q., Brzezinski, M. A., & Robinson, R. S,. 2020. Isopycnal transport and scavenging of 230Th and 231Pa in the Pacific Southern Ocean. Global Biogeochemical Cycles, 34.
  • Ng, H.C., Robinson, L.F., Rowland, G.H., Chen, S.S. and McManus, J.F., 2020. Coupled analysis of seawater and sedimentary 231Pa/230Th in the tropical Atlantic. Marine Chemistry: 103894.
  • Gu, S., Liu, Z., Oppo, D. W., Lynch-Stieglitz, J., Jahn, A., Zhang, J., and Wu, L., 2020, Assessing the potential capability of reconstructing glacial Atlantic water masses and AMOC using multiple proxies in CESM: Earth and Planetary Science Letters, v. 541, p. 116294.
  • Pinedo-González, P., Anderson, R.F., Vivancos, S.M., Pavia, F.J. and Fleisher, M.Q., 2020. A new method to extract 232Th, 230Th and 231Pa from seawater using a bulk-extraction technique with Nobias PA-1 chelating resin. Talanta: 121734.
  • Missiaen L., Menviel L. C., Meissner K. J., Roche D. M., Dutay J.-C., Bouttes N., Lhardy F., Quiquet A., Pichat S. and Waelbroeck C., 2020. Modelling the impact of biogenic particle flux intensity and composition on sedimentary Pa/Th. Quaternary Science Reviews 240, 106394.
  • Missiaen L., Bouttes N., Roche D. M., Dutay J.-C., Quiquet A., Waelbroeck C., Pichat S., and Peterschmitt J.-Y., 2020. Carbon isotopes and Pa∕Th response to forced circulation changes: a model perspective. Climate of the Past, 16, 867-883.
  • Costa K. M., Hayes C. M., Anderson R. F., Pavia F. J., Bausch A., Deng F., Dutay J.-C., Geibert W., Heinze C., Henderson G., Hillaire‐Marcel C., Hoffmann S., Jaccard S. L., Jacobel A. W., Kienast S. S., Kipp L., Lerner P., Lippold J., Lund D., Marcantonio F., McGee D., McManus J. F., Mekik F., Middleton J. L., Missiaen L., Not C., Pichat S., Robinson L. F., Rowland G. H., Roy‐Barman M., Tagliabue A., Torfstein A., Winckler G. and Zhou Y., 2020. 230Th normalization: New insights on an essential tool for quantifying sedimentary fluxes in the modern and Quaternary ocean. Paleoceanography and Paleoclimatology, 35, e2019PA003820.
  • Süfke F., Schulz H., Scheen J., Szidat S., Regelous M., Blaser P., Pöppelmeier F., Goepfert T. J., Stocker T. F. and Lippold J., 2020. Inverse response of 231Pa/230Th to variations of the Atlantic meridional overturning circulation in the North Atlantic intermediate water. Geo-Marine Letters, 40, 75–87.
  • Lerner P., Marchal O., Lam P. J., Gardner W., Richardson M. J. and Mishonov A., 2020. A model study of the relative influences of scavenging and circulation on 230Th and 231Pa in the western North Atlantic. Deep Sea Research Part I: Oceanographic Research Papers, 155, 103159.
  • Gdaniec S., Roy-Barman M., Levier M., Valk O., van der Loeff M. R., Foliot L., Dapoigny A., Missiaen L., Mörth C.-M. and Andersson P. S., 2020. 231Pa and 230Th in the Arctic Ocean: Implications for boundary scavenging and 231Pa/230Th fractionation in the Eurasian Basin. Chemical Geology, 532, 119380.

2019:

  • Süfke F., Pöppelmeier F.,Goepfert T., Regelous M., Koutsodendris A., Blaser P., Gutjahr M., Lippold J., 2019. Constraints on the northwestern Atlantic deep water circulation from 231Pa/230Th during the last 30,000 years. Paleoceanography and Paleoclimatology, 34, 1945–1958.
  • Lippold, J., Pöppelmeier, F., Süfke, F., Gutjahr, M., Goepfert, T.J., Blaser, P., Friedrich, O., Link, J.M., Wacker, L., Rheinberger, S., Jaccard, S.L., 2019. Constraining the Atlantic Meridional Overturning Circulation during the Holocene. Geophysical Research Letters 46, 11338-11346.
  • Jerome S., Bobin C., Cassette P., Dersch R., Galea R., Liu H., Honig A., Keightley J., Kossert K., Liang J., Marouli M., Michotte C., Pommé S., Röttger S., Williams R. and Zhang M., 2020. Half-life determination and comparison of activity standards of 231Pa. Applied Radiation and Isotopes 155, 108837.
  • Grenier M., François R., Soon M., Rutgers van der Loeff M., Yu X., Valk O., Not C., Moran S. B., Edwards R. L., Lu Y., Lepore K. and Allen S. E., 2019. Changes in Circulation and Particle Scavenging in the Amerasian Basin of the Arctic Ocean over the Last Three Decades Inferred from the Water Column Distribution of Geochemical Tracers. Journal of Geophysical Research: Oceans, 124, 9338-9363.
  • García-Torano, E., Crespo, T., Marouli, M., Jobbágy, V., Pommé, S., Ivanov, P., 2019. Alpha-particle emission probabilities of 231Pa derived from first semiconductor spectrometric measurements. Applied Radiation and Isotopes 154, 108863.
  • Essex, R. M., Williams, R. W., Treinen, K. C., Collé, R., Fitzgerald, R., Galea, R., Keightley, J., LaRosa, J., Laureano-Pérez, L., Nour, S., Pibida, L. 2019. Preparation and calibration of a 231Pa reference material. Journal of Radioanalytical and Nuclear Chemistry.
  • Lund, D. C., Pavia, F. J., Seeley, E. I., McCart, S.E., Rafter, P. A., Farley, K. A., Asimow, P. D., Anderson, R. F. 2019. Hydrothermal scavenging of 230Th on the Southern East Pacific Rise during the last deglaciation. Earth and Planetary Science Letters 510, 64-72.
  • Thiagarajan, N., McManus, J. F. 2019. Productivity and sediment focusing in the Eastern Equatorial Pacific during the last 30,000 years. Deep Sea Research Part I, 147, 100-110.
  • Medley, P., Tims, S. G., Froehlich, M. B., Fifield, L. K., Bollhöfer, A., Wallner, A., Pavetich, S. 2019. Development of 231Pa AMS measurements to improve radiological dose assessment from uranium mining and milling. Nucl. Instrum. Methods Phys. Res. B 1, 66-69.
  • Obert, J. C., Scholz, D., Felis, T., Lippold, J., Jochum, K. P., Andreae, M. O. 2019. Improved constrains on open-system processes in fossil reef corals by combined Th/U, Pa/U and Ra/Th dating: A case study from Aqaba, Jordan. Geochimica et Cosmochimica Acta 245, 459-478.

2018:

  • Hoffmann, S. S., McManus, J. F., Swank, E. 2018. Evidence for Stable Holocene Basin-Scale Overturning Circulation Despite Variable Currents Along the Deep Western Boundary of the North Atlantic Ocean. Geophysical Research Letters 45 (24), 13,427-13,436
  • Pavia, F., Anderson, R., Vivancos, S., Fleisher, M., Lam, P., Lu, Y., Cheng, H., Zhang, P., Edwards, R.L., 2018. Intense hydrothermal scavanging of 230Th and 231Pa in the deep Southeast Pacific. Marine Chemistry 201, 212-228.
  • Gdaniec, S., Roy-Barman, M., Foliot, L., Thil, F., Dapoigny, A., Burckel, P., Garcia-Orellana, J., Masque, P., Mörth, C.-M., Andersson, P.S., 2018. Thorium and protactinium isotopes as tracer of marine particle fluxes and deep water circulation in the Mediterranean Sea. Marine Chemistry 199, 12-23.
  • Ng, H.C., Robinson, L., McManus, J.F., Mohamed, K.J., Jacobel, A.W., Ivanovic, R.F., Gregoire, L.J., Chen, T., 2018. Coherent deglacial changes in western Atlantic Ocean circulation. Nature Communications, 9 (2947).
  • Missiaen, L., Pichat, S., Waelbroeck, C., Douville, E., Bordier, L., Dapoigny, A., Thil, F., Foliot, L., Wacker, L., 2018. Downcore variations of sedimentary detrital (238U/232Th) ratio: implications on the use of 230Thxs and 231Paxs to reconstruct sediment flux and ocean circulation. Geochemistry, Geophysics, Geosystems, 19 (8), 2560-2573.
  • Deng, F., Henderson, G., Castrillejo, M., Perez, F. F., 2018. Evolution of 231Pa and 230Th in overflow waters of the North Atlantic. Biogeosciences 15, 7299-7313.
  • Hulten, v. M., Dutay, J-C., Roy-Barman, M., 2018. A global scavenging and circulation ocean model of thorium-230 and protactinium-231 with improved particle dynamics (NEMO-ProThorP 0.1). Geoscientific Model Development, 11, 3537-3556.
  • Treinen, K. C., Gaffney, A. M., Rolison, J. M., Samperton, K. M., McHugh, K. C., Miller, M. L., Williams, R. W., 2018. Improved protactinium spike calibration method applied to 231Pa-235U age-dating of certified reference material for nuclear forensics. Journal of Radioanalytical and Nuclear Chemistry (2018).
  • Valk, O., Rutgers van der Loeff, M. M., Geibert, W., Gdaniec, S., Rijkenberg, M. J. A., Moran, S. B., Lepore, K., Edwards, R. L., Lu, Y., Puigcorbé, V., 2018. Importance of hydrothermal vents in scavenging removal of 230Th in the Nansen Basin. Geophysical Research Letters, 45 (19), 10539-10548.
  • Obert, J. C., Scholz, D., Lippold, J., Felis, T., Jochum, K. P., Andreae, M. O. 2018. Chemical separation and MC-ICPMS analysis of U, Th, Pa and Ra isotope ratios of carbonates. Journal of Analytical Atomic Spectrometry 2018, 33, 1372-1383.
  • Waelbroeck, C., Pichat, S., Böhm, E., Lougheed, B. C., Faranda, D., Vrac, M., Vazquez Riveiros, N., Burckel, P., Lippold, J., Arz, H. W., Dokken, T., Thil, F., Dapoigny, A. 2018. Relative timing of precipitation and ocean circulation changes in the western equatorial Atlantic over the last 45 ky. Climate of the Past 14, 1315-1330.
  • Süfke, F., Lippold, J., Happel, S., 2018. Improved Separation of Pa from Th and U in Marine Sediments with TK400 Resin. Analytical Chemistry 90 (2), 1395-1401.

2017:

  • Lippold, J., Gutjahr, M., Blaser, P., Christner, E., de Carvalho Ferreira, M.L., Mulitza, S., Christl, M., Wombacher, F., Böhm, E., Antz, B., Cartapanis, O., Vogel, H., Jaccard, S.L., 2017. Corrigendum to “Deep water provenance and dynamics of the (de)glacial Atlantic meridional overturning circulation” [Earth Planet. Sci. Lett. 445 (2016) 68–78]. Earth and Planetary Science Letters 458, 444-448.
  • Lynch-Stieglitz, J., 2017. The Atlantic Meridional Overturning Circulation and Abrupt Climate Change. Annual Review of Marine Science 9, 83-104.
  • Costa, K. M., Jacobel, A. W., McManus, J. F., Anderson, R. F., Winckler, G., and Thiagarajan, N., 2017, Productivity patterns in the equatorial Pacific over the last 30,000 years: Global Biogeochemical Cycles, v. 31, no. 5, p. 850-865.
  • Rempfer, J., Stocker, T.F., Joos, F., Lippold, J., Jaccard, S.L., 2017. New insights into cycling of 231Pa and 230Th in the Atlantic Ocean. Earth and Planetary Science Letters 468, 27-37.
  • Mulitza, S., C. M. Chiessi, E. Schefuß, J. Lippold, D. Wichmann, B. Antz, A. Mackensen, A. Paul, M. Prange, K. Rehfeld, M. Werner, T. Bickert, N. Frank, J. Lynch-Stieglitz, R. C. Portilho-Ramos, A. O. Sawakuchi, M. Schulz, T. Schwenk, R. Tiedemann, M. Vahlenkamp, Y. Zhang 2017. Synchronous and proportional deglacial changes in Atlantic Meridional Overturning and northeast Brazilian precipitation. Paleoceanography 32:6, 622-633.
  • Voigt, I., A.P.S. Cruz, S. Mulitza, A. Mackensen, J. Lippold, B. Antz, M. Zabel, Y. Zhang, C.F. Barbosa, A.A. Tisserand 2017. Variability in mid-depth ventilation of the western Atlantic Ocean during the last deglaciation. Paleoceanography 32:9, 948-965.
  • Lin, P., Xu, C., Zhang, S., Sun, L., Schwehr, K.A., Bretherton, L., Quigg, A., Santschi, P.H. 2017. Importance of coccolithophore-associated organic biopolymers for fractionating particle-reactive radionucluides (234Th, 233Pa, 210Pb, 210Po, and 7Be) in the ocean. Biogeosciences 122:8, 2033-2045.
  • Hillaire-Marcel, C., Ghaleb, B., de Vernal, A., Maccali, J., Cuny, K., Jacobel, A., Le Duc, C., McManus, J., 2017. A New Chronology of Late Quaternary Sequences From the Central Arctic Ocean Based in "Extinction Ages" of Their Excesses in 231Pa and 230Th. Geochemistry, Geophysics, Geosystems 18:12, 4573-4585.
  • Luo, Y. 2017. Reinterpretation of oceanic 230Th profiles based on decadal export productivity (2003-2010). Scientific Reports 7, 505.
  • Gu, S., Liu, Z., 2017 231Pa/230Th in the ocean model of the Community Earth Model (CESM1.3). Geoscientific Model Development 10, 4723-4742.
  • Rolison, J. M., Treinen, K. C., McHugh, K. C., Gaffney, A. M., Williams, R. W., 2017. Application of the 226Ra-230Th-234U and 227Ac-231Pa-235U radiochronometers to uranium certified reference material. Journal of Radioanalytical and Nuclear Chemistry 314 (3), 2459-2467.

2016:

  • Burckel, P., Waelbroeck, C., Luo, Y., Roche, D., Pichat, S., Jaccard, S.L., Gherardi, J., Govin, A., Lippold, J., Thil, F., 2016. Changes in the geometry and strength of the Atlantic Meridional Overturning Circulation during the last glacial (20-50 ka). Climate of the Past 12, 2061–2075.
  • Henry, L.G., McManus, J.F., Curry, W.B., Roberts, N.L., Piotrowski, A.M., Keigwin, L.D., 2016. North Atlantic ocean circulation and abrupt climate change during the last glaciation. Science, 353, 470-474.
  • Lippold, J., Gutjahr, M., Blaser, P., Christner, E., Ferreira, M.-L.C., Mulitza, S., Christl, M., Wombacher, F., Böhm, E., Antz, B., Cartapanis, O., Vogel, H., Jaccard, S., 2016. Deep water provenance and dynamics of the (de)glacial Atlantic meridional overturning circulation. Earth and Planetary Science Letters 445, 68-78.
  • Rutgers van der Loeff, M., Venchiarutti, C., Stimac, I., van Ooijen, J., Huhn, O., Rohardt, G., Strass, V., 2016. Meridional circulation across the Antarctic Circumpolar Current serves as a double 231Pa and 230Th trap. Earth and Planetary Science Letters.
  • Turner, S., Kokfelt, T., Hoernle, K., Lundstrom, C., Hauff, F., 2016. 231Pa systematics in postglacial volcanic rocks from Iceland. Geochimica et Cosmochimica Acta 185, 129-140.
  • Costa, K.M., McManus, J.F., Anderson, R.F., Ren, H., Sigman, D.M., Winckler, G., Fleisher, M.Q., Marcantonio, F., Ravelo, A.C., 2016. No iron fertilization in the equatorial Pacific Ocean during the last ice age. Nature 529, 519-522.

2015:

  • Böhm, E., Lippold, J., Gutjahr, M., Frank, M., Blaser, P., Antz, B., Fohlmeister, J., Frank, N., Andersen, M.B., Deininger, M., 2015. Strong and deep Atlantic Meridional Overturning Circulation during the last glacial cycle. Nature 517, 73-76.
  • Burckel, P., Waelbroeck, C., Gherardi, J.M., Pichat, S., Arz, H., Lippold, J., Dokken, T., Thil, F., 2015. Atlantic Ocean circulation changes preceded millennial tropical South America rainfall events during the last glacial. Geophysical Research Letters 42, 2014GL062512.
  • Dutay, J.C., Tagliabue, A., Kriest, I., van Hulten, M.M.P., 2015. Modelling the role of marine particle on large scale 231Pa, 230Th, Iron and Aluminium distributions. Progress in Oceanography 133, 66-72.
  • Hayes, C., Anderson, R.F., Fleisher, M.Q., Huang, K.-F., Robinson, L.F., Lu, Y., Cheng, H., Edwards, R.L., Moran, S.B., 2015a. 230Th and 231Pa on GEOTRACES GA03, the U.S. GEOTRACES North Atlantic transect, and implications for modern and paleoceanographic chemical fluxes. Deep Sea Research Part II: Topical Studies in Oceanography 116, 29-41.
  • Hayes, C., Anderson, R.F., Fleisher, M.Q., Vivancos, S.M., Lam, P.J., Ohnemus, D.C., Huang, K.-F., Robinson, L.F., Lu, Y., Cheng, H., Edwards, R.L., Moran, S.B., 2015b. Intensity of Th and Pa scavenging partitioned by particle chemistry in the North Atlantic Ocean. Marine Chemistry 170, 49-60.
  • Jonkers, L., Zahn, R., Thomas, A., Henderson, G., Abouchami, W., François, R., Masque, P., Hall, I.R., Bickert, T., 2015. Deep circulation changes in the central South Atlantic during the past 145 kyrs reflected in a combined 231Pa/230Th, Neodymium isotope and benthic record. Earth and Planetary Science Letters 419, 14-21.
  • Luo, Y., Lippold, J., 2015. Controls on 231Pa and 230Th in the Arctic Ocean. Geophysical Research Letters 42, 5942-5949.

2014:

  • Bradtmiller, L., McManus, J.F., Robinson, L.F., 2014. 231Pa/230Th evidence for a weakened but persistent Atlantic meridional overturning circulation during Heinrich Stadial 1. Nature Communications 5, 5817.
  • Deng, F., Thomas, A., Rijkenberg, M., Henderson, G., 2014. Controls on seawater 231Pa, 230Th and 232Th concentrations along the flow paths of deep waters in the Southwest Atlantic. Earth and Planetary Science Letters 390, 93-102.
  • Hayes, C., Anderson, R., Fleisher, M., Serno, S., Winckler, G., Gersonde, R., 2014. Biogeography in 231Pa/230Th ratios and a balanced 231Pa budget for the Pacific Ocean. Earth and Planetary Science Letters 391, 307-318.
  • Roberts, N., McManus, J., Piotrowski, A., McCave, N., 2014. Advection and scavenging controls of Pa/Th in the northern NE Atlantic. Paleoceanography 29, 668–679.
  • Lin, P., Guo, L., Chen, M., 2014. Adsorption and fractionation of thorium and protactinium on nanoparticles in seawater. Marine Chemistry 162, 50-59.

2013:

  • Hayes, C., Anderson, R., Jaccard, S., François, R., Fleisher, M., Soon, M., Gersonde, R., 2013. A new perspective on boundary scavenging in the North Pacific Ocean. Earth and Planetary Science Letters 369–370, 86-97.
  • Hoffmann, S., McManus, J., Curry, W., Brown-Leger, L.S., 2013. Persistent export of 231Pa from the deep central Arctic Ocean over the past 35,000 years. Nature 497, 603-607.
  • Lam P. J., Robinson L. F., Blusztajn J., Li C., Cook M. S., McManus J. F., Keigwin L. D., 2013. Transient stratification as the cause of the North Pacific productivity spike during deglaciation. Nature Geoscience 6, 622–626.

2012:

  • Anderson, R.F., Fleisher, M.Q., Robinson, L.F., Edwards, L., Hoff, J.A., Moran, S., Rutgers vd Loeff, M., Thomas, A., Roy-Barman, M., Francois, R., 2012. GEOTRACES Intercalibration of 230Th, 232Th, 231Pa and prospects for 10Be. Limnology and Oceanography: Methods 10, 179-213.
  • Auro, M., Robinson, L., Burke, A., Bradtmiller, L., Fleisher, M., Anderson, R., 2012. Improvements to 232-thorium, 230-thorium, and 231-protactinium analysis in seawater arising from GEOTRACES intercalibration. Limnol. Oceanogr.: Methods 10, 464–474.
  • Bourne, M., Thomas, A., Niocaill, C., Henderson, G., 2012. Improved determination of marine sedimentation rates using 230Thxs. Geochemistry Geophysics Geosystems 13, Q09017.
  • Lippold, J., Luo, Y., Francois, R., Allen, S., Gherardi, J., Pichat, S., Hickey, B., Schulz, H., 2012a. Strength and geometry of the glacial Atlantic Meridional Overturning Circulation. Nature Geoscience 5, 813-816.
  • Lippold, J., Mulitza, S., Mollenhauer, G., Weyer, S., Christl, M., 2012b. Boundary scavenging at the east Atlantic margin does not negate use of Pa/Th to trace Atlantic overturning. Earth and Planetary Science Letters 333–334, 317-331.
  • Okubo, A., Obata, H., Gamo, T., Yamada, M., 2012. 230Th and 232Th distributions in mid-latitudes of the North Pacifc Ocean: Effect of bottom scavenging. Earth and Planetary Science Letters 339, 139-150.
  • van Calsteren, P., Thomas, L., 2012. Quantitation of protactinium, 231Pa in abyssal carbonate. J. Anal. At. Spectrom 27.

2011:

  • Burke, A., Marchal, O., Bradtmiller, L., McManus, J., François, R., 2011. Application of an inverse method to interpret 231Pa/230Th observations from marine sediments. Paleoceanography 26, PA1212.
  • Guihou, A., Pichat, S., Govin, A., Nave, S., Michel, E., Duplessy, J.-C., Telouk, P., Labeyrie, L., 2011. Enhanced Atlantic Meridional Overturning Circulation supports the Last Glacial Inception. Quaternary Science Reviews 30, 1576-1582.
  • Kretschmer, S., Geibert, W., Loeff, M.R.v.d., C.Schnabel, Xu, S., Mollenhauer, G., 2011. Fractionation of 230Th, 231Pa, and 10Be induced by particle size and composition within an opal-rich sediment of the Atlantic Southern Ocean. Geochimica et Cosmochimica Acta 75, 6971–6987.
  • Lippold, J., Gherardi, J., Luo, Y., 2011. Testing the 231Pa/230Th paleocirculation proxy - A data versus 2D model comparison. Geophysical Research Letters 38, L20603.
  • Wan Mahmood, Z. U. Y., Mohamed, C. A. R., Ahmad, Z., Ishak, A. K., Mohamed, N., 2011. Variation of 231Pa, 230Th and 231Paex/230Thex in surface sediments of the Sabah-Sarawak coastal waters. Journal of Radioanalytical and Nuclear Chemistry 289(1), 91-95.

2010:

  • Christl, M., Lippold, J., Hofmann, A., Wacker, L., Lahaye, Y., Synal, H., 2010. 231Pa/230Th: a proxy for upwelling off the coast of West Africa. Nuclear Instruments and Methods in Physics Research B 268, 1159–1162.
  • Gherardi, J., Luo, Y., Francois, R., McManus, J., Allen, S., Labeyrie, L., 2010. Reply to comment by S. Peacock on “Glacial-interglacial circulation changes inferred from 231Pa/230Th sedimentary record in the North Atlantic region”. Paleoceanography 25, PA2207.
  • Guihou, A., Pichat, S., Nave, S., Govin, A., Labeyrie, L., Michel, E., Waelbroeck, C., 2010. Late slowdown of the Atlantic Meridional Overturning Circulation during the Last Glacial Inception: New constraints from sedimentary (231Pa/230Th). Earth and Planetary Science Letters 289, 520–529.
  • Luo, Y., Francois, R., Allen, S., 2010. Sediment 231Pa/230Th as a recorder of the rate of the Atlantic meridional overturning circulation: insights from a 2-D model. Ocean Science 6, 381-400.
  • Negre, C., Zahn, R., Thomas, A., Masque, P., Henderson, G., Martinez-Mendez, G., Hall, I., Mas, J., 2010. Reversed flow of Atlantic deepwater during the Last Glacial Maximum. Nature 468, 84 - 89.
  • Not, C., Hillaire-Marcel, C., 2010. Time constraints from 230Th and 231Pa data in late Quaternary, low sedimentation rate sequences from the Arctic Ocean: an example from the northern Mendeleev Ridge. Quaternary Science Reviews 29, 3665-3675.
  • Peacock, S., 2010. Comment on “Glacial-interglacial circulation changes inferred from 231Pa/230Th sedimentary record in the North Atlantic region” by J.M. Gherardi et al. Paleoceanography 25.

2000s:

  • Roberts K. A., Xu C., Hung C., Conte M. H., Santschi P. H., 2009. Scavenging and fractionation of thorium vs. protactinium in the ocean, as determined from particle–water partitioning experiments with sediment trap material from the Gulf of Mexico and Sargasso Sea. Earth and Planetary Science Letters, 286, 131-138.
  • Roy-Barman M. (2009) Modelling the effect of boundary scavenging on Thorium and Protactinium profiles in the ocean. Biogeosciences Discussions, 6, 7853–7896.
  • Dutay, J., Lacan, F., Roy-Barman, M., Bopp, L., 2009. Influence of particle size and type on 231Pa and 230Th simulation with a global coupled biogeochemical-ocean general circulation model: A first approach. Geochemistry Geophysics Geosystems 10.
  • Gherardi, J., Labeyrie, L., Nave, S., Francois, R., McManus, J., Cortijo, E., 2009. Glacial-interglacial circulation changes inferred from 231Pa/230Th sedimentary record in the North Atlantic region. Paleoceanography 24, PA2204.
  • Lippold, J., Grützner, J., Winter, D., Lahaye, Y., Mangini, A., Christl, M., 2009. Does sedimentary 231Pa/230Th from the Bermuda Rise monitor past Atlantic Meridional Overturning Circulation? Geophysical Research Letters 36, L12601.
  • Negre, C., Thomas, A., Mas, J., Garcia-Orellana, J., Henderson, G., Masque, P., Zahn, R., 2009. Separation and Measurement of Pa, Th, and U Isotopes in Marine Sediments by Microwave-Assisted Digestion and Multiple Collector Inductively Coupled Plasma Mass Spectrometry. Analytical Chemistry 81, 1914–1919.
  • Bradtmiller, L.I., Anderson, R.F., Fleisher, M.Q., Burckle, L.H. 2009. Comparing glacial and Holocene opal fluxes in the Pacific sector of the Southern Ocean. Paleoceanography 24:2.
  • Keigwin, D., Boyle, E., 2008. Did North Atlantic overturning halt 17,000 years ago? Paleoceanography 23, PA1101.
  • Kretschmer, S., W. Geibert, Schnabel, C., Loeff, M.R.v.d., Mollenhauer, G., 2008. Distribution of 230Th, 10Be and 231Pa in Sediment Particle Classes. Geochimica et Cosmochimica Acta 72.
  • Scholten, J., Fietzke, J., Mangini, A., Garbe-Schönberg, D., Eisenhauer, A., Stoffers, P., Schneider, R., 2008. Advection and Scavenging: Effect on 230Th and 231Pa distribution off Southwest-Africa. Earth and Planetary Science Letters 271, 159-169.
  • Bradtmiller, L., Anderson, R., Fleisher, M., Burckle, L., 2007. Opal burial in the equatorial Atlantic Ocean over the last 30 kyr: implications for glacial-interglacial changes in the ocean silicon cycle. Paleoceanography 22, PA4216.
  • Christl, M., Wacker, L., Lippold, J., Suter, M., 2007. Protactinium-231, a new radionuclide for AMS. Nuclear Instruments and Methods in Physics Research B 262, 379–384.
  • Francois, R., 2007. Paleoflux and paleocirculation from sediment 230Th and 231Pa/230Th, Proxies in Late Cenozoic Paleoceanography: Paleoflux and Paleocirculation from sediment 230Th and 231Pa/230Th. Elsevier, Amsterdam.
  • Lynch-Stieglitz, J., Adkins, J., Curry, W., Dokken, T., Hall, I., Herguera, J., Hirschi, J., Ivanova, E., Kissel, C., Marchal, O., Marchitto, T., McCave, I., McManus, J., Mulitza, S., Ninnemann, U., Peeters, F., Yu, E., Zahn, R., 2007. Atlantic Meridional Overturning Circulation During the Last Glacial Maximum. Science 316, 66-69.
  • Siddall, M., Stocker, T., Henderson, G., Joos, F., Frank, M., Edwards, N., Ritz, S., Müller, S., 2007. Modelling the relationship between 231Pa/230Th distribution in North Atlantic sediment and Atlantic meridional overturning circulation. Paleoceanography 22, PA2214.
  • Thomas, A., Henderson, G.M., McCave, I.N., 2007. Constant bottom water flow into the Indian Ocean for the past 140 ka indicated by sediment 231Pa/230Th ratios. Paleoceanography 22, PA4210.
  • Bradtmiller, L., Anderson, R., Fleisher, M., Burckle, L., 2006. Diatom productivity in the equatorial Pacific Ocean from the last glacial period to the present: A test of the silicic acid leakage hypothesis. Paleoceanography 21.
  • Hall, I., Moran, S., Zahn, R., Knutz, P., Shen, C., Edwards, R., 2006. Accelerated drawdown of meridional overturning in the late-glacial Atlantic triggered by transient pre-H event freshwater perturbation. Geophysical Research Letters 33, L16616.
  • Heinze, C., Gehlen, M., Land, C., 2006. On the potential of 230Th, 231Pa, and 10Be for marine rain ratio determinarions: A modeling study. Global Biogeochemical cycles 20.
  • Thomas, A., Henderson, G., Robinson, L., 2006. Interpretation of the 231Pa/230Th paleocirculation proxy: New water-column measurements from the southwest Indian Ocean. Earth and Planetary Science Letters 241 493– 504.
  • Gherardi, J., Labeyrie, L., McManus, J., Francois, R., Skinner, L., Cortijo, E., 2005. Evidence from NE Atlantic basin for variability in the rate of meridional overturning circulation through the last deglaciation. Earth and Planetary Science Letters 240.
  • Moran, S., Shen, C., Edwards, R., Edmonds, H., Scholten, J., Smith, J., Ku, T.-L., 2005. 231Pa and 230Th in surface sediments of the Arctic Ocean: Implications for 231Pa/230Th fractionation, boundary scavenging, and advective export. Earth and Planetary Science Letters 234.
  • Mortlock, R.A., Fairbanks, R.G., Chiu, T.C., Rubenstone, J., 2005. 230Th/234U/238U and 231Pa/235U ages from a single fossil coral fragment by Multi-collector Magnetic-sector Inductively Coupled Plasma Mass Spectrometry. Geochimica et Cosmochimica 69, 649-657.
  • Scholten, J., Fietzke, J., Mangini, A., Stoffers, P., Rixen, T., Gaye-Haake, B., Blanz, T., Ramaswamy, V., Sirocko, F., Schulz, H., Ittekkot, V., 2005. Radionuclide fluxes in the Arabian Sea: the role of particle composition. Earth and Planetary Science Letters 230, 319– 337.
  • Siddall, M., Henderson, G., Edwards, N., Frank, M., Müller, S., Stocker, T., Joos, F., 2005. 231Pa/230Th fractionation by ocean transport, biogenic particle flux and particle type. Earth and Planetary Science Letters 237, 135-155.
  • Xiaolong, H., Pinga, L., Baosonga, W., 2005. Evaluation of 233Pa decay data. Applied Radiation and Isotopes 62.
  • Pourmand, A., Marcantonio, F., Bianchi, T. S., Canuel, E. A., Waterson, E. J., 2005. Radionuclide and biomarker proxies of past ocean circulation and productivity in the Arabian Sea. Geophysical Research Letters 32 (10).
  • Chase, Z., Anderson, R., Fleisher, M., Kubik, P., 2004. Comment on "On the importance of opal, carbonate and lithogenic clays in scavenging and fractionating 230Th 231Pa and 10Be in the ocean". Earth and Planetary Science Letters 220.
  • Edmonds, 2004. 230Th and 231Pa in the Arctic Ocean: implications for particle fluxes and basin-scale Th/Pa fractionation. Earth and Planetary Science Letters 227.
  • Francois, R., Frank, M., Loeff, M.R.v.d., Bacon, M., 2004. 230Th normalization: An essential tool for interpreting sedimentary fluxes during the late Quaternary. Paleoceanography 19, PA1018.
  • Geibert, W., Usbeck, R., 2004. Adsorption of Th and Pa onto different particle types: experimental findings. Geochimica et Cosmochimica 68(7), 1489.
  • Luo, S., Ku, T., 2004. Reply to Comment on ‘‘On the importance of opal, carbonate, and lithogenic clays in scavenging and fractionating 230Th, 231Pa and 10Be in the ocean’’. Earth and Planetary Science Letters 220, 223-229.
  • McManus, J., Francois, R., Gherardi, J., Keigwin, L., Brown-Leger, S., 2004. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate change. Nature 428, 834-837.
  • Pichat, S., Sims, K., Francois, R., McManus, J., Leger, S., Albarede, F., 2004. Lower export production during glacial periods in the equatorial Pacific derived from 231Pa/230Thxs,0 measurements in deep-sea sediments. Paleoceanography 19, PA4023.
  • Regelous, M., Turner, S., Elliot, T., Rostani, K., Hawkesworth, C., 2004. Measurement of fg quantities of Pa in silicate rock samples by Multicollector Inductively Coupled Plasma Mass Spectrometry. Analytical Chemistry 76, 3584-3589.
  • Fleisher, M.Q., Anderson, R.F., 2003. Assessing the collection efficiency of Ross Sea sediment traps using 230Th and 231Pa. Deep Sea Research Part II: Topical Studies in Oceanography 50, 693-712.
  • Goldstein, S., C. Stirling, 2003. Techniques for Uranium series Nuclides: 1992-2002. Reviews in Mineralogy and Geochemistry 52, 23-57.
  • Henderson, G., Anderson, R., 2003. The U-series toolbox for paleoceanography, Uranium Series Geochemistry. Reviews in Mineralogy and Geochemistry 128, 493-531.
  • Narita H., Abe R., Tate K., Kim Y.-I., Harada K., Tsunogai S., 2003. Anomalous Large Scavenging of 230Th and 231Pa Controlled by Particle Composition in the Northwestern North Pacific. Journal of Oceanography, 59, 739–750.
  • Luo, S., Ku, T., 2003. On the importance of opal, carbonate and lithogenic clays in scavenging and fractionating 230Th 231Pa and 10Be in the ocean. Earth and Planetary Science Letters 220, 201-211.
  • Shen, C., Cheng, H., Edwards, L., Moran, B., Edmonds, H., Hoff, J., Thomas, R., 2003. Measurement of Attogram Quantities of 231Pa in Dissolved and Particulate Fractions of Seawater by Isotope Dilution Thermal Ionization Mass Spectroscopy. Analytical Chemistry 75.
  • Dezileau, L., Bareille, G., Reyss, J. L. 2003. The 231Pa/230Th ratio as a proxy for past changes in opal fluxes in the Indian sector of the Southern Ocean. Marine Chemistry 81, 105-117.
  • Chase, Z., Anderson, R., Fleisher, M., Kubik, P., 2002. The influence of particle composition and particle flux on scavenging of Th, Pa and Be in the ocean. Earth and Planetary Science Letters 204, 215-229.
  • Christl, M., Siegle, S., Strobl, C., Reuter, S., Mangini, A., 2002. Distribution and Sedimentary flux of 10Be, 230Th and 231Pa in the South Atlantic Ocean on a Glacial/Interglacial Timescale; a Multibox Model Approach. Geochimica Et Cosmochimica Acta 66 (15A), A141.
  • Guo, L., Chen, M., Gueguen, C., 2002. Control of Pa/Th ratio by particulate chemical composition in the ocean. Grophysical Research Letters 29, 1961.
  • Henderson, G., 2002. New oceanic proxies for paleoclimate. Earth and Planetary Science Letters 203, 1-13.
  • Moran, S.B., Shen, C.C., Edmonds, H.N., Weinstein, S.E., Smith, J.N., Edwards, R.L., 2002. Dissolved and particulate 231Pa and 230Th in the Atlantic Ocean: constraints on intermediate/deep water age, boundary scavenging, and 231Pa/230Th fractionation. Earth and Planetary Science Letters 203, 999-1014.
  • Morgenstern, 2002. Age Determination of Highly Enriched Uranium: Separation and Analysis of 231Pa. Analytical Chemistry 74, 5513.
  • Choi, M., Francois, R., Sims, K., Bacon, M.P., Brown-Leger, S., Fleer, A.P., Ball, L., Schneider, D., Pichat, S., 2001. Rapid determination of 230Th and 231Pa in seawater by desolvated micro-nebulization Inductively Coupled Plasma magnetic sector mass spectrometry. Marine Chemistry 76, 99-112.
  • Moran, S., Shen, C., Weinstein, S., Hettinger, L., Hoj, J., Edmonds, H., Edwards, R., 2001. Constraints on deep water age and particle flux in the Equatorial and South Atlantic Ocean based on seawater 231Pa and 230Th data. Geophysical Research Letters 28, 3437-3440.
  • Walter, H., Geibert, W., Loeff, M.M.R.v.d., Fischer, G., Bathmann, U., 2001. Shallow vs. deep-water scavenging of 231Pa and 230Th in radionuclide enriched waters of the Atlantic sector of the Southern Ocean. Deep-Sea Research I 48, 471-493.
  • Yu, E., 2001. Fluxes of 230Th and 231Pa to the deep sea: implications for the interpreatation of excess 230Th and 231Pa/230Th profiles in sediments. Earth and Planetary Science Letters 191, 219-230.
  • Scholten, J.C., Fietzke, J., Vogler, S., Rutgers van der Loeff, M.M., Mangini, A., Koeve, W., Wanlek, J., Stoffers, P., Antia, A., Kuss, J. 2001. Trapping efficiencies of sediment traps from the deep Eastern North Atlantic: the 230Th calibration. Deep Sea Research Part II 48:10, 2383-2408.
  • Frank, M., 2000. Similar glacial and interglacial export bioproductivity in the Atlantic sector of the Southern Ocean: multiproxy evidence and implications for glacial atmospheric CO2. Paleoceanography 15.
  • Marchal, O., Francois, R., Stocker, T., Joos, F., 2000. Ocean thermohaline circulation and sedimentary 231Pa/230Th ratio. Paleoceanography 15, 6.

1990s:

  • Asmus, T., Frank, M., Kochschmieder, C., Frank, N., Gersonde, R., Kuhn, G., Mangini, A., 1999. Variations of biogenic particle flux in the southern Atlantic section of the Subantarctic zone during the late Quaternary: Evidence from sedimentary 231Paex and 230Thex. Marine Geology 159, 63-78.
  • Bourdon, 1999. A method for 231Pa analysis by thermal ionization mass spectrometry in silicate rocks. Chem Geol 157, 147.
  • Fietzke, J., Bollhöfer, A., Frank, N., Mangini, A., 1999. Pa determination in manganese crust VA12/2 by TIMS. Nuclear Instruments and Methods in Physics Research B 149, 353-360.
  • Luo, S., Ku, T., 1999. Oceanic 231Pa/230Th ratio influenced by particle composition and reminmeralization. Earth and Planetary Science Letters 167, 183-195.
  • Walter, H.J., 1998. Scavening of 231Pa and 230Th in the South Atlantic: Implications for the use of the 231Pa/230Th ratio as a paleoproductivity proxy. Berichte zu Polarforschung, AWI, Bremerhaven 282.
  • Cheng, 1998. Uranium-Thorium-Protactinium dating systematics. Geochimica et Cosmochimica 62.
  • Edmonds, H., Moran, S.B., Hoff, J.A., Smith, J.N., Edwards, R.L., 1998. Protactinium-231 and Thorium-230 Abundances and High Scavenging Rates in the Western Arctic Ocean. Science 280, 405.
  • Edwards, 1997. Pa231 dating of carbonates by TIMS: implications for quaternary climate change. Science 276.
  • Walter, H.J., Loeff, M.M.R.v.d., Hoeltzen, H., 1997. Enhanced scavenging of 231Pa relative to 230Th in the South Atlantic south of the Polar Front: implications for the use of the 231Pa/230Th ratio as a paleoproductivity proxy. Earth and Planetary Science Letters 149, 85-100.
  • Yu, E., Francois, R., Bacon, M., 1996. Similar rates of modern and last-glacial ocean thermohaline circulation inferred from radiochemical data. Nature 379, 689-694.
  • Scholten, J.C., Rutgers van der Loeff, M.M., Michel, A., 1995. Distribution of 230Th and 231Pa in the water column in relation to the ventilation of the deep Arctic basins. Deep Sea Research Part II: Topical Studies in Oceanography 42, 1519-1531.
  • Burnett, W.C., 1995. Separation of protactinium from geochemical materials via extraction chromatography. Radioactivity & Radiochemistry 6.
  • Frank, M., Eckhardt, J.-D., Eisenhauer, A., Kubik, P.W., Dittrich-Hannen, B., Segl, M., Mangini, A., 1994. Beryllium 10, thorium 230, and protactinium 231 in Galapagos microplate sediments: implications of hydrothermal activity and paleoproductivity changes during the last 100 000 years. Paleoceanography 9 (4), 559-578.
  • Kumar, N., Gwiazda, R., Anderson, R., Froelich, P., 1993. 231Pa/230Th ratios in sediments as a proxy for past changes in Southern Ocean productivity. Nature 362, 45 - 48
  • Rutgers van der Loeff, M., Berger, G., 1993. Scavenging of 230Th and 231Pa near the Antarctic Polar Front in the South Antlantic. Deep-Sea Research II 40, 339-357.
  • Yong Lao, Anderson R. F., Broecker W. S., Trumbore S. E., Hofmann H. J. and Wolfli W. (1992) Transport and burial rates of10Be and231Pa in the Pacific Ocean during the Holocene period. Earth and Planetary Science Letters 113, 173–189.
  • Anderson, R., Lao, Y., W. Broecker, Trumbore, S., Hofmann, H., Wolf, W., 1990. Boundary scavenging in the Pacific Ocean: A comparison of 10Be and 231Pa. Earth and Planetary Science Letters 96, 287-304.
  • Holden, N.E., 1990. Total half-lives for selected nuclides. Pure Appl. Chem. 62, 941.

1980s:

  • Taguchi, K., Harada, K., Tsunogai, S., 1989. Particulate removal of 230Th and 231Pa in the biologically productive northern North Pacific. Earth and Planetary Science Letters 93:2, 223-232.
  • Yang, H.-S., Nozaki, Y., Sakai, H., Masuda, A., 1986. The distribution of 230Th and 231Pa in the deep-sea surface sediments of the Pacific Ocean. Geochimica et Cosmochimica Acta 50:1, 81-89.
  • Nozaki, Y., Nakanishi, T., 1985. 231Pa and 230Th profiles in the open ocean water column. Deep Sea Research Part A 32.
  • Anderson, R., Bacon, M., Brewer, P., 1983a. Removal of 230Th and 231Pa at ocean margins. Earth and Planetary Science Letters 66, 73-90.
  • Anderson, R., Bacon, M., Brewer, P., 1983b. Removal of 230Th and 231Pa from the open ocean. Earth and Planetary Science Letters 62, 7-23.

1970s:

  • Mangini, A., Sonntag, C., 1977. 231Pa dating of deep-sea cores via 227Th counting. Earth and Planetary Science Letters 37, 251.
  • Turekian, K., Chan, L., 1971. The marine geochemistry of the uranium isotopes 230Th and 231Pa. Activation Analysis in Geochemistry and Cosmochemistry edited by A. O. Brunfelt and E. Steinnes,, 69-102.

1960s:

  • Robert, J., Miranda, C.F., Muxart, R., 1969. Determination of the half-life of 231Pa by Microcalorimetry, Institut de Physique Nucleaire, Paris. Laboratoire d'Arcueil, France.
  • Sackett, W., 1960. Protactinium-231 Content of Ocean Water and Sediments. Science 132.

 

Editor: Email
Latest Revision: 2023-10-25
zum Seitenanfang/up